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Decoherence as decay of the Loschmidt echo in a Lorentz gas
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Classical chaotic dynamics is characterized by exponential sensitivity to initial conditions. Quantum me-
chanics, however, does not show this feature. We consider instead the sensitivity of quantum evolution to
perturbations in the Hamiltonian. This is observed as an attenuation of the Loschmidt echoM (t), i.e., the
amount of the original state~wave packet of widths) which is recovered after a time reversed evolution, in the
presence of a classically weak perturbation. By considering a Lorentz gas of sizeL, which for largeL is a
model for anunboundedclassically chaotic system, we find numerical evidence that, if the perturbation is
within a certain range,M (t) decays exponentially with a rate 1/tf determined by the Lyapunov exponentl of
the corresponding classical dynamics. This exponential decay extends much beyond the Eherenfest timetE and

saturates at a timets.l21ln@Ñ#, whereÑ.(L/s)2 is the effective dimensionality of the Hilbert space. Since
tf quantifies the increasing uncontrollability of the quantum phase~decoherence! its characterization and
control has fundamental interest.
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Chaos justifies the observed macroscopic irreversib
within the reversible laws of classical mechanics. One of
characteristic features is the exponential divergence of tra
tories corresponding to nearby initial conditions, which lea
to deterministic unpredictability. However, quantum dyna
ics exhibits insensitivity to initial conditions@1# and hence
prevents a dynamical definition of quantum chaos. The
fore, quantum signatures of chaos in systems with a cha
classical equivalent are sought in their steady-state prope
@2# such as spectral rigidity@3#, wave function morphologies
@4#, and decaying parametric correlations of observables@5#.
Early attempts@6# to address unitary quantum dynamics d
not clarify the connections with the dynamical classical co
cepts of chaos, but the inclusion of interactions with a dis
pative environment was expected@7# to produce an entropy
growth controlled by chaos. In a purely Hamiltonian pro
lem, quantum reversibility can be monitored through t
amount of revival of a local density excitation, upon tim
reversal of its unitary quantum evolution, i.e., the Loschm
echo @8#. By considering a Lorentz gas where the revers
evolution is disturbed by a static perturbation, we find
Loschmidt echo that attenuates exponentially with a rate
sociated with the chaos of the classical system. Under ap
priate conditions, the dynamical instability of the classic
system translates into quantum phase unpredictability~deco-
herence! and the classical Lyapunov exponent becomes
quantum irreversibility rate.

A hypersensitivity of time reversal to perturbations w
observed in recent NMR experiments on many-body s
systems@9,10#. In essence, these experiments@11,12# involve
the creation of a local density excitation represented b
stateu0& which evolves under a many-spin HamiltonianH.
The Loschmidt echo~LE! is the probability of returning to
the initial state when a Hamiltonian evolution for a timet is
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followed by an identical period of imperfect reversal of th
evolution, achieved by the transformationH→2(H1S),
i.e.:

M ~ t !5 z^0uexp@ i ~H1S!t/\#exp@2 iHt/\#u0& z2, ~1!

whereS is a constant~or quasistatic! Hermitian perturbation
representing the imperfection in the Hamiltonian revers
Notice that in these experiments2 ln@M(t)# is a measure@9#
of the growing entropy. A striking finding@10# was that, for
small S, thedecay rateof M (t) becomes independent ofS,
being proportional only to the dynamical scales ofH. The
hints that chaotic systems may be unstable under fluctua
perturbations@7# and that many-body systems could be a
sumed to be intrinsically chaotic@13# suggested to us the
hypothesis that the most relevant parameter of the Ha
tonian dynamics, the Lyapunov exponentl, might control
the decay ofM (t). Moreover, a semiclassical analysis a
suming@14# a one-body classically chaotic Hamiltonian wi
a perturbative potential representing a quenched diso
predicted a LE decaying exponentially with a rate 1/tf5l.
These predictions, based on various approximations, enc
aged us to perform exhaustive numerical experiments.

We consider a Lorentz gas, i.e., a particle in a squ
billiard of areaL2 where we fix an irregular array ofN cir-
cular scatterers~impurities! of radiusR. A particular realiza-
tion of this system is represented in Fig. 1~a! where the
length, in a minimal unita, is L5200a. The scatterer con-
centration isc5NpR2/L258p31022. The minimum dis-
tance allowed between two scatterer centers is 3R. This re-
quirement, together with the imposed periodic bound
conditions, prevents geometrical localization. The Lyapun
exponent of a Lorentz gas should bel5bv/l , wherel is
the collision mean free path,v the particle velocity, andb
;1 a geometrical factor@15# depending logarithmically on
l . In our system, we estimatel .L2/(2NR)2pR/2. Com-
putation of the distribution of distances between collisio.ar
©2002 The American Physical Society06-1
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gives a shifted Poisson distribution whose mean value isl .
The Lyapunov exponent is obtained@16# from the average
logarithm of the distancedt , after a timet, between two
classical trajectories initially separated by a small dista
d0. The condition of smallness ford0 is that dt!R. The
longer the time the more precise the estimation ofl. By
neglecting correlations in the position of the impurities, w
obtain the estimation

b.E
R

`

ds
exp~2s/l !

l exp~2R/l !
E

0

1

dx lnF11
s

RA12x2G . ~2!

The outer integral accounts for the distribution of free pat
s, and the internal one is the distribution of impact para
etersx. Numericalll /v verify Eq. ~2!. For the present cas
of c58p31022, i.e., l 596a, we gotb52.160.1.

The perturbation parametera controls the distortion of
the diagonal components of the mass tensor,mx,x5m0(1
1a) and my,y5m0 /(11a), with m0 the isotropic unper-
turbed mass. This perturbation is inspired by the effects
slight rotation of the sample in the related problem of dipo
spin dynamics@17#, which modifies the mass of the sp
wave excitations. It is written as

S~a!52
a

11a

px
2

2m0
1a

py
2

2m0
. ~3!

For a fixed initial position and velocity we find numer
cally that two evolutions with slightly different mass tenso
lead to trajectories whose distance in phase space grow
ponentially with the same Lyapunov exponent that amplifi

FIG. 1. Wave packet evolution in a system withL/a5200,
R/a520, andc58p31022. ~a! Initial state att50. The velocity
points to the left.~b! State evolved with the unperturbed Ham
tonian for a timet530\/V. ~c! State evolved with the perturbe
Hamiltonian (a50.04) for a timet530\/V. ~d! State evolved from
that depicted in panel~b! with the perturbed Hamiltonian for a tim
t5230\/V. The square of the overlap~Loschmidt echo! between
the states of panels~a! and ~d! is M (t)50.09, the same as tha
between the states of panels~b! and ~c!.
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initial distances, i.e., the classical dynamics of this system
equally sensitive to changes in the Hamiltonian as to chan
in the initial conditions@18#.

The Hamiltonian operator is obtained by a lattice discre
zation on a small scalea. The evolution is calculated usin
the Trotter-Suzuki algorithm@19#. Its basic idea is that, by
choosing a short time unitt, the evolution can be approxi
mated as the finite product of evolution operators where e
one is solved analytically. In the lowest order,

U~t!5exp@ iHt/\#.Ũ~t!5)
k

Q

exp@ iHkt/\#, ~4!

whereH5(k
QHk . The conceptual virtue of this method

thatŨ(t) is always unitary. For an approximation of ordern,
the difference betweenŨ(t) andU(t) is of ordertn11. Our
choice of n54 and t50.1\/V50.2m0a2/\ allowed us to
obtain high accuracy even for times an order of magnitu
larger than needed.

Let us consider a typical system withR/a520, c58p
31022, and sizeL/a5200. The initial state is a Gaussia
wave packet of widths53a and wave numberkx5
20.7/a, ky50 shown in Fig. 1~a!. All further simulations
will use kx5ky53p/8a. Since kR@1, comparison with
semiclassical calculations is justified. We took 2p/k!l
5(9662)a, in order to minimize Anderson’s localizatio
effects. The density resulting from a typical evolution for
time t530\/V @20# is shown in panel~b!. An evolution with
the perturbed Hamiltonian (a50.04) for the same time is
shown in Fig. 1~c!. In both panels the classical trajectorie
corresponding to three initial positions are shown for ref
ence. While densities look similar to the eye,M (t) is about
0.09 indicating the relevant role of the quantum phase in
attenuation ofM (t). Panel~d! shows the LE formed by the
perturbed backward evolution of the state in panel~b!. Ana-
lyzing M (t) in different realizations we observe that, aft
the initial transient,M (t) fluctuates around an exponenti
decay, with a characteristic timetf . Notably this exponen-
tial decay persists much beyond the Ehrenfest timetE
.(1/l)ln@2R/lF#.40\/V, which is fixed by the local scale
of the potential fluctuation@7#. In a Lorentz gas, in contras
with the usual case of chaotic cavities,tE is independent of
the system size@21#. Finally, M (t) saturates on a time scal
related to system size. A typical curve forL/a5800 is shown
with a bold line in Fig. 2.

In principle, any given precision oftf can then be ob-
tained by studying a large enough system; however, this
ily becomes computationally expensive. Alternatively, o
can resort to the ensemble averaging of the observableM (t),
which reduces noise and definestf with the same precision
in much smaller systems. This is exemplified in Fig. 2, whe
we present the ensemble averagesM (t) for billiards of three
different sizes ofL/a5200, 400, and 800 and fixeda
50.024 andc58p31022, which show the same exponen
tial behavior with a progressively expanded range. Sim
plots are obtained for the other parameters with an expon
tial M (t), showing that the ensemble average does not in
duce any spurious effect in the decay. Previous attempt
6-2
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characterize quantum chaos@6# considered the limiting value
M` for the Loschmidt echo at asymptotically large time
M`}1/Ñ was proposed whereÑ is the number of energy
levels appreciably represented in the initial state. In our c
Ñ.(L/s)2. The numerical results verify a complete ind
pendence ofM` on the perturbation. The calculatedM` for
various sizes are shown in the inset of Fig. 2 for a fixeda
50.024. The predicted relationship is shown with a strai
line, obtainingM`5(5.060.1)(a/L)2. For all the sizes we
keptc ~and hencel , l, andtE) fixed and we verified thattf
does not depend onL/a. These results imply that th
Lyapunov exponential behavior persists up to a ti
ts.l21ln@Ñ#.

A representative dependence oftf on the parametera is
obtained by considering the smallest sample size compa
with a good observation of the exponential, in this ca
L/a5200. Figure 3 showsM (t) averaged over 100 realiza
tions that contain at least one scatterer in the classical tra
tory of the wave packet. Fora.ac.0.02, all the exponen
tial decays coincide, within the numerical error, with t
Lyapunov decay associated with the classical system, sh
with a thick line for comparison. The initial perturbativ
parabolic decay,M (t).12b (at)2 with b.0.37(V/\)2,
has a characteristic scale whichdoesdepend quadratically on
the perturbation strength and prevents the curves from b
superimposed. We show in the inset of Fig. 3 the numer
values oftf

21 extracted from the exponential part. It shows
an initial quadratic dependence ona and a crossover atac
.0.02 to saturation at a value close to the class
Lyapunov exponent.

The semiclassical analysis predicts a universal beha
provided that the perturbation is strong enough to be qua
cally significant, but weak enough to be classically irr
evant. The first condition implies that the lengthl̃ 5v t̃ re-

FIG. 2. Bold line, M (t) for an individual system withL/a
5800 anda50.024. The Ehrenfest time is shown with an arro
Dashed line, shown for reference: exponential decay with the
culated Lyapunov exponent of the classical equivalent. Solid lin
averageM (t) for different system sizesL/a5200, 400, and 800
and the same perturbation. In the insetM` is shown for L/a
5200, 300, 400, 500, 600, and 800 as a function of (a/L)2. The
straight line is the best fit, withM`5(560.2)(a/L)2.
04520
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quired for an important change in the phase as a consequ
of the perturbation must be shorter than the distance ass
ated with the Lyapunov exponentv/l. A rough estimation
for our perturbationdmx,x5am0 is

t̃.
p\

dEk
5

pm0a2

a\~12cos@ka# !
&1/l, ~5!

which would predict a critical valueac.0.13. However, we
see the universal exponential even for perturbationsa
>0.02 implying a critical value an order of magnitud
smaller than Eq.~5!. This suggests that either this estimatio
or the condition required in Ref.@14# is too strong@22#.

The condition for a classically weak perturbation mea
that it must not modify the system’s global properties. O
erwise, even in the absence of chaos~no collisions! the per-
turbation would spread out the classical trajectories. In
case, thisM (t) fits a Gaussian decay. If at the time 1/l
required for the chaos to set in the overlap has already
cayed because of the perturbation, the exponential decay
not be observed. This sets an upper bound for the pertu
tion from M (t51/l)5exp@2b(a/l)2#>M` . Replacing with
the parameters of the system shown in Fig. 3 one gets
conditiona<0.3, consistent with our results.

Therefore, we have shown that in a wide range of para
eters M (t) in any large enough individual system deca
exponentially until an asymptotic value is reached. The ch
acteristic decay time does not depend on the perturbat
but rather on the intrinsic properties of the Hamiltonian. T
range of perturbation parameters with an exponential de
is much broader than hinted by the previous semiclass
analysis. From our numerical results one can infer that i
nite systems not showing Anderson’s localization sho

l-
s:

FIG. 3. AverageM (t) for a system withL5200a, R520a,
which makesl 5(9662)a. The values ofa are, from top to bot-
tom, 0.006, 0.009, 0.012, 0.018, 0.024, 0.03, 0.04, 0.05, and 0
The thick line corresponds to an exponential with the calcula
numerical Lyapunov exponent of the system. For long timesM (t)
saturates to a finite valueM` . In the inset the inverse characterist
decay times are shown, evidencing the regime where the deca
M is given by the intrinsic properties of the system. The dotted l
is the fit, tf

215(13066)a2V/\, while the dashed line is the clas
sical Lyapunov exponent.
6-3
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present an unbounded exponential decay. The Lorentz
represents a broad class of chaotic systems, where the
overall behavior is expected. It has the additional advant
over other chaotic cavities that here the saturation time„ts
.(2/l)ln@L/s#… can be made arbitrarily longer than th
Ehrenfest time. This manifests the quantum nature of
observed effect. The simplicity of our perturbation evidenc
a very remarkable property:there is no need for chaoticity o
stochasticity in the ‘‘environment’’ to introduce irreversibi
ity. Figure 1 manifests that the irreversibility produced
small perturbations is caused by their effect on the w
function’s phase. In this sense, the definition of class
chaos in terms of hypersensitivity to initial conditions a
perturbations translates, in the quantum world, into a se
tivity of phases to perturbations in the Hamiltonian, i.e., d
coherence. Since we restricted ourselves to a Hamilton
problem, its solution clarifies how chaos limits our control
dynamics even within the reversible framework of quant
mechanics of closed systems. This concept has deep co
quences for the diverse fields where decoherence mus
minimized, such as classical wave propagation@23#, mesos-
ky
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copic and molecular electronics@24#, and quantum informa-
tion @25#. In view of the entropic meaning of2 ln@M(t)# the
interest for the foundations of statistical physics@26# is clear.

In summary, we have presented numerical evidence s
porting the fact that decoherence, as measured by the e
nential decay of the Loschmidt echo, is controlled by t
same parameters that govern classical chaos. This ren
M (t), defined in Eq.~1!, a very practical tool to study dy
namical quantum chaos.
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